
Effnet ROHC™ (Robust Header Compression)
Performance on Intel® Core™ Microarchitecture-
Based Processors

Technology Evaluation White Paper

Introduction
Effnet is a leading supplier of header compression software solutions to the network infrastructure

and cell phone industry. They have offered software for high-performance network infrastructure

products based on various types of processors, including Intel® Pentium® 4 processors based on

the Intel NetBurst® microarchitecture for some time, and have recently validated products on Intel®

Core™ microarchitecture-based processors, including the new Dual-Core Intel® Xeon® processors 

LV ATCA 5138Δ used in the Intel NetStructure® MPCBL0050 Single Board Computer. These

processors contain two separate execution “cores” on a single die and perform well on desktop,

gaming, and server benchmarks. Robust Header Compression (ROHC) application workloads are

more typical of “user plane” (often referred to as “data plane”) communications workloads and 

are very different from desktop or server workloads. Utilizing the Effnet ROHC™ implementation

designed to run on network infrastructure equipment, rather than the light-weight version

designed to run on mobile devices such as cell phones, Effnet measured how well the multi-

thread capable application would perform on the new Intel® multi-core processors.

Effnet first compared the performance of the Effnet ROHC solution on a core-for-core basis across
two Intel® processors based on different microarchitectures; in other words a single core was used
from each processor. An analysis was then performed to determine whether the Effnet ROHC soft-
ware would scale to take advantage of all four cores available on the Intel NetStructure MPCBL0050
Single Board Computer, which has two Dual-Core Intel Xeon processors LV ATCA 5138.

This paper describes ROHC, the process Effnet used to test the Effnet ROHC software on Intel
processors, and presents the test results.



2

Table of Contents
Overview of Robust Header Compression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

How ROHC Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

ROHC Benefits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

Hardware Resource Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

ROHC Performance on Intel® Architecture Processors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Test Methodology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Test Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Effnet ROHC™ Performance on the Dell Server Based on the Intel® Pentium® 4 Processor  . . . . . . . . . . . . . . . .10

Effnet ROHC Performance on the Intel NetStructure® MCBL00050 Single Board Computer 
with Dual-Core Intel® Xeon® Processor LV 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Compilers and Optimizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Scaling Across Multiple Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Key Findings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Advantages of Intel® Core™ Microarchitecture for ROHC Workloads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Company Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16



3

Overview of Robust 
Header Compression
The ROHC standard, known as RFC 3095, was developed in

2001 by the IETF. This compression scheme, which includes a

compression algorithm and an information exchange protocol,

can compress IP/UDP/RTP headers to just over one byte and 

is robust even in the presence of severe channel degradation.

It can also compress IP/UDP and IP/ESP packet flows.

Header compression is used in many types of networks,

including satellite communications networks, low-bandwidth

wired networks, and private wireless networks such as Terres-

trial Trunked Radio (TETRA). The widely deployed Frame Relay

voice/data encapsulation protocol, typically used to bridge

between local area and other local-area or wide-area networks,

also utilizes header compression.

In addition to the information above, ROHC is also used in

wireless network infrastructure equipment and mobile termi-

nals (cell phones) to decrease header overhead, reduce packet

loss, improve interactive response times, and increase Quality of

Service (QoS) over error-prone wireless radio links. ROHC has

been adapted to work with link layer characteristics like those

used in GSM and CDMA networks, and is known as Link Layer

Assisted-ROHC (ROHC-LLA).

The 3rd Generation Partnership Project (3GPP) standards group

for the GSM/UMTS (W-CDMA) type of cellular network details

IPHC and ROHC standards since Release 4. These schemes are

essential for the successful deployment of equipment based on

the Release 5 and 6 specifications, which introduce IPv6 and

IP Multimedia Subsystem (IMS). The 3GPP2 standards group for

the CDMA type of cellular network also specifies various QoS

techniques including ROHC. The CDMA2000 EV-DO Rev A

specification, for example, uses header compression to help

enable operators to move from circuit-switched voice network

infrastructure over to Voice over IP (VoIP). Figure 1 shows that

header compression is implemented in handsets and all of the

wireless infrastructure equipment upstream from the BTS/NodeB.

HC = Header compression
HC is always used in terminal according to all the standards together with:
1. RNC as per UMTS standard, or
2. SGSN as per GPRS standard, or
3. PDSN as per CDMA2000 standard.

HC BTS/NodeB   

HC
3

HC1

 BSC/RNC

HC2

SGSN
GGSN/PDSN

Figure 1: Header compression in 3G wireless infrastructure equipment



4

How ROHC Works1

Header compression is the process of reducing protocol header

overhead in order to improve link efficiency while maintaining

the end-to-end transparency.

Figure 2 shows the major functional blocks involved in header

compression. Flow context is a set of values of packet header

fields and the patterns of changes in those fields over time. This

context is formed during the compression and decompression

side for each packet flow. The first few packets of a newly

identified flow are sent uncompressed so that a context can 

be determined on both sides. The number of these first few

packets will vary depending on the Bit Error Rate (BER) and

Round-Trip Time (RTT) of the specific link. Once the context is

established on both sides, the compressor compresses the

packets as much as possible until the flow contexts change 

or flow error rates start to increase.

Figure 3, on the next page, illustrates how a series of digits (in

this case, the years 1800 through 1899) can be compressed by

72% using an encoding mechanism known as Window-based

Least Significant Bit encoding (W-LSB). If the “1800” context is

first established between the compressor and the decom-

pressor, and the decompressor knows that only the final digit

will vary, the compressor only needs to send the final nine digits

to enable the decompressor to reconstruct the ten numbers in

the first sequence. Then the context “1810” was established,

and again only the next nine digits would need to be sent. This

process was repeated so that 112 bytes of data were sent, as

opposed to 400 bytes if compression had not been employed.

The W-LSB algorithm together with the feedback mechanism

makes ROHC very robust against bit errors on the link and also

against errors introduced due to long RTTs. In addition, it results

in very high compression ratios, which increase effective link

bandwidth and decrease packet processing requirements in

power sensitive downstream devices such as cell phones.

Figure 4, on the next page, shows the flow of packets over a

hypothetical link. Once the context is established, ROHC sends

packets with maximum compression. If the field pattern changes

(as shown in the diagram by a silence period when neither party

is talking) or if error conditions such as bit errors or packet loss

occur, the context will need to be updated. Therefore, more

information will need to be sent to the decompressor using

slightly larger, but still compressed, packets. Once the context 

is updated, the link reverts to fully compressed packets. The

feedback mechanism from the decompressor back to the

compressor, which triggers this type of behavior, is one of 

the reasons why ROHC is so robust.

Figure 2: Header compression functional blocks

Packet flow

Header Compression Header Compression

ContextContext

Packet flow in
forward direction

Compressed packets

Feedback



5

Figure 3: An example of Window-based Least Significant Bit (W-LSB) encoding

Year field 
compressor

Year field 
decompressor

Context
1800
1810

...
1890

Context
1800
1810

...
1890

1800

1

9

Number of digits sent: 100 x 4 = 400

Number of digits sent: 4 + 9 x 2 + 90 x 1 = 112

Compression gain: 72%

1800-1809

1810-1819

1890-1899

1800-1809

1810-1819

1890-1899

Figure 4: Packet-size variation during VoIP flows

100

10

Header size

Silence Period

Time



ROHC Benefits

ROHC can achieve compression ratios well over 90% for the

most common link, network and transport layer protocols as

shown in Table 1.

Table 2 shows the advantages of using ROHC in wireless

networks. The data in Table 2 is derived from a test scenario

based on a VoIP packet flow using a header chain of IPv6 (40

bytes) and UDP/RTP (total 20 bytes), and carrying one frame 

of an AMR-NB codec at 12.2 kbps (31 bytes). Such a flow was

sent every 20 milliseconds (ms) over a simulated wireless link

that used an uncorrelated BER model with a BER level of 10-3.

The simulation ran for 120 seconds and compressed 6000

packets. As Table 2 shows, ROHC reduced the total number of

packets lost from 52% to 24%. It also decreased the required

call bandwidth by 63%, header sizes by 94%, and the number

of packets lost due to the header field errors from 38% to 3%.

The benefits of ROHC are most apparent in CODECs that can

handle bit errors in their payload as demonstrated in Table 2.

Even without using such a CODEC, ROHC can reduce packet

loss by approximately 50%. On certain wireless links, the

compressed packets can be sent in just one link frame which is

a highly efficient use of radio resources. These ROHC character-

istics make it possible to incorporate high-quality VoIP services

in wireless networks.

Hardware Resource Requirements

As shown, header compression greatly reduces the amount 

of data that must be sent and increases the effective link

bandwidth. This is extremely important because according to

RFC 3095, “Bandwidth is the most costly resource in cellular

links. Processing power is very cheap in comparison. Implemen-

tation or computational simplicity of a header compression

scheme is therefore of less importance than its compression

ratio and robustness.”2

ROHC uses various encoding schemes including W-LSB and

other specific field pattern-based encoding algorithms. CRC is

used in most or all of the packets conveying context information

to protect against residual errors and to maximize context

validity. Packet loss and reordering, the most common 

error events on wireless networks, are handled by the 

compression/decompression method outlined previously.

This means that ROHC must actually save a larger amount 

of context information than any single non-compressed header

would contain. Because the context information is saved, fewer

processor cycles are needed to process a given packet. The

processor’s L2/L3 cache also helps limit the total number of

processor cycles required since accessing cached data is more

efficient than accessing data from system memory. But the

trade-off for reduced processor cycles is that the system will

require larger amounts of memory and higher memory access

bandwidth to support the larger amount of context information.

6

Without ROHC With ROHC

Total Packets Transmitted 6000 6000

Packets Lost 3125 (52%) 1448 (24%)

Call Bandwidth (Kbps) 35.5 12.9

Average Header Size 60 3.1

Packets Lost Due to Error 

in Header 2309 (38%) 188 (3%)

Table 2: Advantages of ROHC

Min. compressed
Protocol Total header header size Compresson
Headers size (bytes) (bytes) gain (%)

IP4/UDP 28 1 96.4

IP4/UDP/RTP 40 1 97.5

IP6/UDP 48 3 93.75

IP6/UDP/RTP 60 3 95

Table 1: Header compression gains



7

In addition to saving context, a complete header compression

solution also includes packet classification and context manage-

ment modules. Flow classification can be based on hash-table

algorithms which use hash-keys to identify context information.

These algorithms are also processor intensive and also require

suitable memory bandwidth so that the identified context can 

be accessed as quickly as possible.

Therefore, a balance must be achieved between minimizing

processing cycles and also keeping memory sub-system

requirements within bounds. This can be achieved by using

sophisticated methods to control context memory size. The 

goal is to keep memory size, bandwidth and processor cycles  –

required for processing and memory access – within the limits

required to attain a specific processor load factor at a high

number of flows.

As noted in the introduction, ROHC workloads are very different

from typical desktop or server workloads. Unlike graphics or

video-processing, for example, ROHC does not use any floating-

point operations. Most of the processing involves branch 

(not loop) processing using logical and integer operations.

Maintaining state after each compression and decompression

operation is essential, so memory access (read, write, or both)

happens frequently, but in a highly random fashion, with few if

any sequential memory accesses. The most suitable hardware

platform for ROHC is therefore one in which high processor

performance is combined with a large L2 cache, where 

memory bandwidth is high, and where branch prediction 

is highly optimized.

The previous discussion is focused primarily on network 

infrastructure equipment with high-end hardware architectures.

A good ROHC implementation for user equipment handsets 

has only to support a very small subset of contexts, so it 

is highly optimized and configured to limit the number of

processor cycles it requires, and to use the memory 

resources extremely efficiently.

ROHC Performance on 
Intel® Architecture Processors
On cell phones, ROHC performance is typically measured as

processor cycles per packet. On network infrastructure equipment,

however, processor load per number of compressed/decompressed

VoIP flow pairs is the more meaningful measurement. Therefore,

the Effnet test application, ROHC Load Generator was designed

to generate and measure VoIP flow pairs. The application was

compiled on both the Intel® C++ Compiler and the standard GNU*

C Compiler for Linux*, with various optimization flags, and tests

were run on each set of object code.

The Effnet ROHC™ version 2.2 embedded in ROHC Load 

Generator was first run on a Dell Dimension* 8400 desktop,

based on the Intel Pentium 4 processor, in order to provide

baseline performance measurements for a processor based 

on Intel NetBurst microarchitecture. The same performance

measurements were then done on the Intel NetStructure

MCPBL0050, which uses the Dual-Core Intel Xeon processor 

LV 5138, based on the Intel Core microarchitecture.

Test Methodology

The goal of the test was to determine how many VoIP flows

could be processed by the Effnet ROHC software for a range 

of processor loadings during the 20 millisecond (ms) signaling

interval used between consecutive packets in a typical VoIP

flow. The ROHC Load Generator software sets a 20 ms system

timer, generates packets for all flows, and then hands them over

one by one to Effnet ROHC for processing. The test application

can vary the number of flows generated and processed and the

various processor utilization rates can be measured using the

Linux /proc/stat command.

The ROHC Load Generator software runs in Linux user space.

A typical packet is loaded into memory and then altered as

required for each flow before being handed off to Effnet ROHC.

This process is extremely efficient and its effect on processor

utilization is negligible. As noted previously, the ROHC Load

Generator is single threaded. So for the tests involving multiple

processor cores, a single copy of the load generation software

and the ROHC Load Generator application was loaded onto each

individual core with the Linux system call sched_setaffinity.



8

The following test methodology assumptions and conditions

should be noted:

• There was no packet routing or reading from/writing 

to the network interface, so time to generate packets can 

be ignored. This approach was taken in order to measure 

the efficiency and performance of the Effnet ROHC 

software by itself.

• Effnet ROHC processes each flow via classification,

compression and decompression. The test simulation 

is actually bi-directional and implemented in both 

forward and reverse channels.

• The test software does not simulate silence periods.

This means that the tests are actually simulating an 

extreme case, with the maximum load present at all 

times on each processor core.

Intel® Pentium® 4 processor
(Based on Intel NetBurst® Dual-Core Intel® Xeon® processor LV 5138Δ

microarchitecture) (Based on Intel® Core™ microarchitecture)

Vendor/Model Dell Dimension* 8400 Desktop Intel NetStructure® MPCBL0050 Single Board
Computer (AdvancedTCA*)

BIOS Version Dell Dimension System BIOS Version 1.17.1057:
(version A09) 2006 American Megatrends, Inc.

Bios Version:
WH500ES0.86E.00.01.0000.092020061136

BIOS Setup Hyper-Threading Technology C1E and Adjacent Cacheline Prefetch disabled
(HT Technology) disabled

CPU Intel® Pentium® 4 processor 630Δ Two Dual-Core Intel® Xeon® processors LV 5138
supporting HT Technology† 3.00 GHz 2.13 GHz

L2 Cache 2 MB 4 MB shared

Chipset Intel® 925X Express Chipset Intel® 5000P Chipset/ESB2

Front-Side Bus Speed 800 MHz 1066 MHz

Memory Dual Independent Memory Channels Four Independent Memory Channels
Samsung 2x 512 MB DDR2 533 MHz FBDIMMs
CL4 non-ECC* (1 GB total) Micron 4x 1 GB DDR2 667 CL5 ECC* (4 GB total)

Operating System Kernel Linux* 2.6.11.4-20a-smp Red Hat Enterprise Linux AS* release 4 
(Nahant Update 4)
Linux 2.6.9-42.ELsmp #1 SMP

GNU C Compiler Version 3.3.5 Version 3.4.4

Intel® C++ Compiler for Linux* 9.1.036 (32-bit) 9.1.036 (32-bit and 64-bit)

ROHC Software Effnet ROHC™ version 2.2 Effnet ROHC™ version 2.2

ROHC Load Generator Software Identical versions Identical versions

Table 3: Effnet ROHC™ benchmark hardware and software environment



9

Figure 5: Effnet ROHC™ benchmark results for the Intel® Pentium® 4 processor 630

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

GNU C Compiler -O2

Number of Flows

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

6,
00

0

7,
00

0

8,
00

0

9,
00

0

10
,0

00

11
,0

00

12
,0

00

13
,0

00

CP
U 

Lo
ad

Intel® C Compiler -O2 Intel® C Compiler -O3 -xB

Test Environment

The test system environment is shown in Table 3.

Hyper Threading Technology† (HT Technology) was disabled 

on the Dell system (based on the Intel Pentium 4 processor)

because the test application is single threaded and disabling 

HT Technology allowed it to access the entire L2 cache. Two

BIOS settings on the Intel NetStructure MPCBL0050 Single 

Board Computer were modified. Disabling adjacent cache-line

memory pre-fetch on the dual-processor system improved

performance of the test application with almost no sequential

memory accesses since this type of workload does a high

proportion of random-memory accesses. C1E was also turned

off. Enhanced C1 state (C1E) is an automatic, very fine-grained

voltage/frequency reduction that takes place when an operating

system places the processor in a C1 state. C1E was turned off 

to ensure a consistent processing environment during the testing

process. The memory size difference between two platforms

should not affect performance, as Effnet ROHC requires less than

a Gigabyte of memory even when supporting large number of

flows at high processor core loads. It is also not expected that

the differences in GNU C Compiler or Intel® C++ Compiler

versions made a significant difference in the final results.



10

Effnet ROHC™ Performance on 
the Dell Desktop Based on the 
Intel® Pentium® 4 Processor

Testing was carried out with Effnet ROHC version 2.2 compiled

with the following C compilers and optimization flags:

• GNU C Compiler -O2

• Intel C++ Compiler -O2 

• Intel C++ Compiler -O3 -xB

The results shown in Figure 5, on the previous page, can be

summarized as follows:

• The CPU load increases almost linearly as the number of

input flows increases. At 50% CPU load, the Intel Pentium 4

processor-based system can handle about 7100 pairs of 

bi-directional flows.

• The Intel C++ Compiler for Linux with -O2 optimization gives

the best performance. The performance improvement varies

between 5–20 % over the GNU C Compiler. The higher the

number of input flows (the more processor load), the bigger

the improvement when the Intel C++ Complier object code

was used. In other words, at a lower number of flows the

improvement was 5%, but at the highest number of flows 

the improvement was 20%.

• The Intel C++ Compiler with more aggressive optimization 

(-O3 -xB) did not give better performance on the Effnet 

ROHC application.

Effnet ROHC™ Performance on the 
Intel NetStructure® MCBL00050 
Single Board Computer with Dual-Core 
Intel® Xeon® Processor LV 5138

Two types of tests were conducted on the Intel NetStructure

MPCBL0050 Single Board Computer. One compared the GNU C

Compiler and the Intel C++ Compiler with optimization flags, and

the second analyzed the performance of Effnet ROHC on

different numbers of cores.

Compilers and Optimizations

The main purpose of the first group of tests on the Intel® single-

board computer was to determine which compiler and compile

flag combination gave the best performance. The following

compilers and compile option flags were tested:

• GNU C Compiler: m32 -O2

• GNU C Compiler: m64 -O2

• Intel C++ Compiler (32-bit) -O2 

• Intel C++ Compiler (64-bit) -O2

• Intel C++ Compiler (32-bit) -O3 -xB



11

The results are shown in Figure 6 and summarized below:

• The 64-bit Intel C++ Compiler with the -O2 option gave the

best performance. It improved performance by approximately

5–15% (in absolute terms) compared to the 64-bit GNU

Compiler. It also gave 5–20% better performance compared

to the 32-bit Intel C++ Compiler, and 5–30% better perfor-

mance compared to the 32-bit GNU Compiler. Again, the

higher the number of input flows (i.e., the more processor

load), the more improvement was noted using the Intel 

C++ Compiler for Linux.

• At 50% processor load, a single core of the Dual-Core Intel

Xeon processor LV 5138 can handle up to 8300 pairs of bi-

directional flows when using the 64-bit Intel C++ Compiler for

Linux. This is about 18% better than the 7100 pairs that can

be handled on the Intel Pentium 4 processor.

• Intel C++ Compiler (32-bit) with normal optimization (-O2) has

slightly better performance compared to more aggressive

optimization (-O3 -xB).

• The processor utilization increased almost linearly as the input

number of flows increased.

Figure 6: Effnet ROHC™ benchmark on Dual-Core Intel® Xeon® processor LV 5138 (single core)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Number of Flows

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

6,
00

0

7,
00

0

8,
00

0

9,
00

0

10
,0

00

11
,0

00

12
,0

00

13
,0

00

14
,0

00

15
,0

00

CP
U 

Lo
ad

GNU C Compiler -m32 -O2

GNU C Compiler -m64 -O2

Intel® C Compiler 32 -O3 -xB

Intel® C Compiler 64 -O2

Intel® C Compiler 32 -O2



12

Scaling Across Multiple Cores

The second series of tests observed the performance difference

when one or two processors (1–4 cores) were involved in ROHC

processing.

The results are shown in Figure 7 and summarized below:

• As expected, the highest number of flows per core occurred

when only a single core per processor was in use (see gray,

dotted line in Figure 7).

• The average processor load and performance was the 

same when the Effnet ROHC application was executing on 

one core in each processor even though the two processors

share a single front-side bus. This suggests the cores are 

not competing for the front-side bus bandwidth. Subsequent

measurements with the Intel® VTune™ Performance Analyzer

confirmed this observation.

• The average processor load per core when three processes

ran in three cores (see black line in Figure 7) was similar to

when two processes ran on two cores in the same chip (see

gray, solid line in Figure 7), and also when applications ran 

on all four cores. This indicated that processes or threads

running on different cores had little effect on each other.

• There was an approximate 10% reduction in performance 

of two cores in the same chip than two cores in different

processors. This can be explained due to a slight processing

penalty when two cores running separate single-threaded

applications share the same L2 cache. In all cases, perfor-

mance increased linearly as the number of flows increased,

regardless of whether 1, 2, 3, or 4 cores were in use. This

increase is independent of the number of processor cores.

Figure 7: Effnet ROHC™ performance on Intel NetStructure® MPCBL00050 Single Board Computer with dual Dual-Core Intel® Xeon®

processors LV 5138 (1-4 cores) 

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Number of Flows Per Core

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

6,
00

0

7,
00

0

8,
00

0

9,
00

0

10
,0

00

11
,0

00

12
,0

00

13
,0

00

14
,0

00

15
,0

00

CP
U 

Lo
ad

4 Cores 2 Cores (b)3 Cores 1 Core

2 cores (a): Processes run on cores in the same chip. 2 cores (b): Processes run on cores in different chips.

2 Cores (a)



13

Key Findings
• The Intel C++ Compiler for Linux produced better results 

than the GNU C Compiler on both platforms.

• The standard optimization flag -O2 resulted in the best 

performance.

• The Intel VTune Performance Analyzer proved to be a valuable

tool to find and remove performance bottlenecks. It enabled

performance improvement of about 17% over the latest Effnet

ROHC version.

• Utilizing the Intel Pentium 4 processor-based platform, the

Effnet ROHC supported about 4500 bi-directional VoIP flows

at 30% processor load and about 7100 bi-directional VoIP

flows at 50% processor load.

• On the platform using the Dual-Core Intel Xeon processor LV

5138, Effnet ROHC supported about 5700 bi-directional VoIP

flows at 30% utilization of one core and about 8300 bi-direc-

tional VoIP flows at 50% on a single core.

• Running on multiple processors and cores, Effnet ROHC

performance showed the same linear increase pattern as on a

single processor. The performance for two cores was slightly

better when the cores were in different processors compared

to when they were in same processor. Almost linear scaling

across multiple cores was observed as multiple cores were

used and performance improved. For example, when using

two cores at 30% load/core, Effnet ROHC supported about

11400 bi-directional VoIP flows.

Intel® Pentium® 4 Dual-Core Intel®

processor 630Δ Xeon® processor Approximate
(Based on Intel LV 5138Δ (Based Scaling Factor  

Processor NetBurst® micro- on Intel® Core™ compared with
Utilization architecture) microarchitecture) 1 core (per core)

1 Core 30% 4500 5700
50% 7100 8300

2 Cores (Same Processor) 30% 9600 (4800 per core) 84% 
50% 15000 (7500 per core) 90% 

2 Cores (Different Processor) 30% 11400 (5700 per core) 100% 
50% 16600 (8300 per core) 100% 

3 Cores 30% 15000 (5000 per core) 88% 
50% 23100 (7700 per core) 93% 

4 Cores 30% 19200 (4800 per core) 84% 
50% 29600 (7400 per core) 89% 

Table 4: Benchmark results summary for Effnet ROHC™ on Intel® processors 



14

Advantages of Intel® Core™

Microarchitecture for ROHC 
Workloads
The Effnet ROHC performed 20% better on a single core within

the Dual-Core Intel Xeon processor LV 5138 than on a single-

core Intel Pentium 4 processor, even though the Intel Pentium 4

processor was running at about a 29% faster clock rate. This

performance gain was attributed to the different chipsets in the

test systems. The Intel® E5000P chipset on the Intel NetStructure

MPCBL0050 Single Board Computer had a 25% faster front-

side bus, utilized quad memory channels rather than dual

memory channels, and supported 21% faster memory than the

Intel® 925X Express Chipset. However, the performance gains

appear to be beyond what would have been expected from the

more capable memory sub-system alone. It appears that the

new Intel Core microarchitecture brings a high degree of

branching and frequent, small, random memory accesses to

typical user plane workloads characterized by integer and logical

operations. The Intel Core microarchitecture pipeline design,

for example, may be playing a significant role. It consists of 

14 stages and implements both macro- and micro-operations,

whereas the Intel NetBurst microarchitecture pipeline has 31

stages. The high degree of branching and the small, random

memory accesses of ROHC workloads indicate that a pipeline is

less likely to be correctly filled with speculative data and

instructions, therefore a time/processor cycle penalty is incurred

by having to flush and re-fill the longer pipeline. The Intel Core

microarchitecture pipeline is able to execute and return four

instructions simultaneously; the Intel NetBurst microarchitecture

pipeline can handle only three. The Intel Core microarchitecture

also implements advanced branch prediction and advanced

memory disambiguation, which feed instructions and data to

each core’s execution engines more efficiently.

Additional studies would be required to assess whether the

larger L2 cache in the Dual-Core Intel Xeon processor LV 5138

contributed to the improved performance. ROHC workloads do

not use frequently accessed large data structures like other

workloads that typically benefit most from larger L2 caches.

Since the Effnet ROHC implementation is single threaded, with

each instance bound to one specific core, it could not make use

of the highly efficient data exchange between cores enabled by

the large, coherent L2 cache implemented in the processor.

Intel® Intelligent Power Capability is a key feature of the Intel

Core microarchitecture that played a pivotal role in enabling

high-performance scalability in a thermal environment such as

those required by AdvancedTCA* systems. The extremely high-

processing-per-watt efficiency of the Dual-Core Intel Xeon

processors LV 5138 enabled the Intel NetStructure MPCBL0050

Single Board Computer to be built with two dual-core processors,

a high-performance Intel® chipset and up to 16 GB of ECC RAM

while maintaining the thermal headroom required for placing 

an Advanced Mezzanine Card on the baseboard.



15

Acronyms
3GPP: 3rd Generation Partnership Project

3GPP2: 3rd Generation Partnership Project 2

AMR-NB: Adaptive Multi Radio-Narrow Band

ATCA: Advanced Telecom Computing Architecture

BER: Bit Error Rate

CDMA: Code Division Multiple Access

CDMA2000: Code Division Multiple Access 2000

CPU: Central Processing Unit

CRC: Cyclic Redundancy Check

DP: Dual Processor

EV-DO Rev A: Evolution-Data Only Revision A

ESP: Encapsulating Security Protocol

GGSN: Gateway GPRS Support Node

GPRS: General Packet Radio Services

GSM: Global System for Mobile communication

IETF: Internet Engineering Task Force

IMS: IP Multimedia Subsystem

IP: Internet Protocol

L2: Layer 2

PDSN: Packet Data Support Node

QoS: Quality of Service

RFC: Request for Comments

ROHC: Robust Header Compression

ROHC-LLA: Link Layer Assisted-ROHC

RTP: Real-Time Protocol

RTT: Round-Trip Time

TETRA: Terrestrial Trunked Radio

UDP: User Datagram Protocol

UMTS: Universal Mobile Telecommunication System

VoIP: Voice on Internet Protocol

W-CDMA: Wideband Code Division Multiple Access

W-LSB: Window-based Least Significant Bit



Company Information

About Effnet

Effnet AB, a wholly owned subsidiary of the publicly traded

Effnet Holding AB (publ), is a world leader in the area of IP

Header Compression. Effnet develops and sells embedded

software that increases the efficiency, speed and quality of

IP traffic in fixed, mobile and satellite networks.

For more information about Effnet and IP Header
Compression please visit www.effnet.com.

About Intel

By enabling more content, mobility and capabilities than

ever before, Intel gives you the advantage in a rapidly

changing world. With advanced silicon building blocks,

industry-standard platforms, modular infrastructure solutions

and ecosystem support, Intel can help you deliver a more

compelling digital lifestyle. Intel, the world leader in silicon

innovation, develops technologies, products and initiatives to

continually advance how people work and live.

For more information about Intel, visit
www.intel.com/pressroom.

1 Adapted from the more detailed explanation in Effnet AB white paper, “The Concept of Robust Header Compression, ROHC,” February 2004.
http://www.effnet.com/sites/effnet/pdf/uk/Whitepaper_Robust_Header_Compression.pdf.

2 C. Bormann, et al., “Robust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed,” RFC 3095, July 2001.

Effnet AB, “The Concept of Robust Header Compression, ROHC”, white paper, Feb,2004. http://www.effnet.com/sites/effnet/pdf/uk/Whitepaper_Robust_Header_Compression.pdf

Δ Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See
http://www.intel.com/products/processor_number for details.

† Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. See www.intel.com/homepage/land/hyperthreading_more.htm for additional information.

Performance tests are done using a specific Effnet ROHC™ release and test application (ROHC Load Generator) and reflect performance of Effnet ROHC™ on a specific Intel product using specific
testcases and test environment. Any difference in system hardware or software design or configuration may affect actual performance. For more information on performance tests and Effnet
products, visit Effnet website (www.effnet.com).

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel® products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations
(http://www.intel.com/performance/resources/limits.htm).

Intel does not control or audit the design or implementation of third party benchmarks or websites referenced in this document. Intel encourages all of its customers to visit the referenced
websites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of systems available for
purchase.

*Other names and brands may be claimed as the property of others.

Copyright © 2007 Intel Corporation. All rights reserved. Intel, the Intel logo, NetStructure, NetBurst, VTune, Intel Core, Intel Pentium, and Intel Xeon are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United States and other countries.

Effnet, Effnet ROHC, Effnet Header Compression, and the Effnet logo are registered trademarks of Effnet AB.

0107/CHA/OCG/XX/PDF Order Number: 316160-001US



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


